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1.0 INTRODUCTION 

Many naturally occurring flows as well as those encountered in engineering applications 

are time dependent. In such cases the velocity field responds to an imposed pressure gradient 

or other external excitation in an extremely complex fashion. To illustrate the possible 
effects of time-varying conditions on fluid response, it is useful to consider a class of internal 

flows that are called (equivalently) pulsating, pulsatile, or oscillating. Such flows are 

characterized by temporally periodic variations of the imposed pressure, which may result 
from (1) unstable combustion processes, (2) acoustic disturbances, (3) vibrations at flow 
boundaries, (4) the action of reciprocating pumps, or (5) unstable pressure regulators and 
valves, it is known from analysis (Refs. 1 through 4) and has been demonstrated 

experimentally (Refs. 5 through 8) that flow pulsations may (1) promote transition to 

turbulence, (2) alter the turbulent structure of the flow, (3) cause flow reversals during a 
portion of a cycle, and (4) significantly augment or, in some cases, inhibit heat transfer. The 

velocity field, moreover, varies in its response to a periodic pressure disturbance with the 
peak velocity amplitude lagging the peak pressure amplitude by as much as 90 deg (i.e., one- 
fourth the period of the disturbance) on the centerline of a tube. Perhaps the most striking 
feature of bounded, pulsating flows is the observation that the maximum fluid velocity 

frequently does not occur on the centerline of the duct or pipe so that (I) a greater portion of 
the mass flow is carried in the annular region near the wall and (2) the instantaneous wall 

shear stress may be significantly greater than in steady flows at the same Reynolds number. 

It is obvious that, even in this relatively simple case, transient fluid motions may 

introduce effects that cannot be ignored in conducting, or analyzing data from, 

experimental studies. The complexity of the phenomena is such, moreover, that attempting 
to draw conclusions on the basis of quasi-steady models is not advisable and often is a 
serious error. In view of these considerations, it is necessary to develop practical 
computational models that will allow the determination of the details of a variety of 
transient flows common in AEDC test facilities to serve as a guide for both the establishment 

of test procedures and the interpretation of test data. 

Undoubtedly, the most general way to obtain reliable models of transient fluid 
phenomena will be through the development of finite difference or finite element models 

which solve the governing partial differential equations. Pending the development of such 
programs and as an aid in their evaluation it is useful to develop mathematically exact 

solutions to those specific problems which lend themselves to exact analysis. Various 
analytical solutions have been proposed for the velocity field on pulsating flows. Sexl (Ref. 

9) obtained a solution for the velocity field in a tube in which only a purely oscillatory flow 
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existed. His results were extended by Uchida (Ref. 2) to pulsatile flow superimposed on a 

laminar mean fluid motion. Although Uchida's formulation is valid for pulsations of 

arbitrary waveform, his results consider only the case of simple harmonic oscillations. 

Romie (Ref. 3) treated the velocity and temperature field in laminar pipe flows subjected to 
siinple harmonic pressure pulsations in a study of heat-transfer mechanisms. The velocity 

field in the developing flow near the entrance of a tube was treated by Atabek and Chang 
(Ref. 10). Barnett (Ref. 4) obtained the velocity and temperature fields in turbulent 
pulsating flows in determining the effect of simple harmonic longitudinal vibrations on heat 
transfer in a tube. 

It is the purpose of  this study to obtain a solution for the velocity field in a fully 

developed, turbulent pipe flow subjected to excitation by longitudinal disturbances of 
arbitrary waveform. The particular cases to be studied will include (l) simple harmonic 

pulsations (sinusoidal variation in time) of the pressure field or longitudinal vibrations of 
the tube, (2) coupled pressure pulsations and vibrations, and (3) pressure pulsations of 
arbitrary waveform. 

2.0 FLUID RESPONSE TO LONGITUDINAL PULSATIONS 

The subject of this study is the motion of a fluid in a pipe when the fluid experiences 
pulsations induced either by a time-varying pressure field or by longitudinal vibrations of the 
tube. Two candidate cylindrical reference frames for formulating the problem are shown in 
Fig. i. In the inertial reference frame (r ' ,  0 ' ,  z), the "no-slip" condition at the tube wall 

(r = R) requires specification of a nonhomogeneous, time-dependent velocity at the 

boundary when the tube is vibrating. If, on the other hand, a similarly oriented coordinate 

system (r, 0, z) is chosen to move at the velocity of the wail, a homogeneous boundary 

r ~ 

. ~ Z  

l 

-~Z  

= -ZoU sin ut 

\ ' , , /  k 

- - I l i  / 

Figure 1. Comparison of inertial and tube-fixed 
coordinate systems. 

6 
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condition will result, and the problem is simpler from a mathematical viewpoint. This latter 

system, however, is noninertial, and the momentum equations must be modified to account 
p -  

for this fact. 

2 . 1  F O R M U L A T I O N  I N  N O N I N E R T I A L  F R A M E  

The continuity, momentum, and energy equations for the isothermal flow of an 

isotropic, Newtonian fluid in a noninertial coordinate system (Ref. 4) are given below. 

Continuity: L~p ( I)  - - + p A  = 0 
Dt 

Momentum: 

DV ,~p d~ 2 0 ] a i (0 V, avJ~l 
_ _  = , o x  ' [(,, - , ,  - - -  . , 

Energy: P l)p . tt ~ = 0 ( 3 )  

P D~ 

where 
0V 

I) (~ V. a A J :rod tl~ diss ip . 'u ion funcl ion.  
Dt r?t J 0x 0x 

i J 

Comparing these equations to those obtained for an inertial coordinate system, one sees 

that they differ only by the term 0(dVi/dt), which appears in the momentum equation. The 

vector V, is the velocity of the moving reference relative to a fixed frame. For a simple 
harmonic oscillation of frequency, ~, and amplitude, Zo, directed along the Z-axis,* the 

following relations may be established between the coordinate systems of Fig. !: 

,'" = r , O" = 0 , z = z + g  o ~ ' o s ~ t  (4 )  

*Note that more complex vibrations may be treated by introducing the appropriate reference motion here. 
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Thus, if U, V, W are the components of the coordinate system velocity vector, V,, then 

U = V = 0 ,*tld ~ = - Z  o o j  cos  to t  (5)  

The relations (1) through (3) and (5) are adequate to describe the laminar flow of fluid in 

a longitudinally vibrating tube. To obtain a formulation suitable for turbulent flov, s as well, 

it is convenient to decompose any dynamic variable, B (such as pressure and velocity), into 
the sum of a statistical mean value, B = b, and a fluctuating component, b'(t). Thus: 

V, = v , v :  I 

P = p--p" 
(6) 

It should be noted that if temporal averages are utilized, the period, T, over which the 
average 

1" 
b = -I ] "  B(t)dt  

'I 

is obtaitted must be small with respect to the period of the imposed oscillation to allow the 
mean value to be time dependent. Introducing Eqs. (4) and (6) into Eqs. (1) through (3), 

assuming the fluid to be incompressible, and taking the average of the resulting equations in 
accordance with Reynolds rules (Ref. 11) leads to the following relations with respect to the 
noninertial cylindrical reference system: 

Continuity: 

- - - ( r u ~ +  = 0 (7)  
| a| r aO 0 ~ z 

r-Momentum 

~,, ~ ,  ', ~u v z ~l, ] r'~;~ 
- -  4- U ----  a,. .: ,+%, _ 
a t  O r  | 0 0  r oqz P O r  

+ V 

8, 8~ / r 2 r 2 a e  2 r 2 80  a72 

_ _ ( , ._ '2 )  I ,~ c u ' v ' )  4- o ( u ' w ' ) - ~  , , ,2_, , ,2  
- , ( s )  

8 
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O-Momentum: 

ax, c~,,, v Ov ,,~ av  1 0 p  
- -  " l  I I  - -  4- - -  - -  -1- - -  4 -  W - -  

al a~ ' O0 r az pr dO 

I I ~ ( & a " )  ~ + i a2,  . 2 a, a2, . ]  
+ V - -  F - -  - - - -  - - - -  - -  + - - - - - -  + - - - - - -  

r2 r 2 aO 2 ,.2 aO Oz 2 

- I - -  - -  1 0 ( v , 2 )  O (u 'v ' )  4 - - - -  + 
a ,  , r dO 

z-Momentum: 

Ow Ow • aw aw 1 Ol' 4 Z o~ 2 c o s o t  
- -  i -  U -  - I -  - -  - -  -I-  W -  = 

at 0r r a0 az o r~. o 

2 ] 
(,, ",,.') 4 7 (.-Tv') (9) 

" r V  

~ ~ - ~2 a0 2 0,2 

I O (u" 
- g W' )  + - -  - -  

O .---~) u" ,,." ] 1 a (v 'w ' )  + -  (w + 
ao az  r 

The energy equation, Eq. (3), simply states that the dissipation, cI,, is zero. 

These equations may be greatly simplified under the following assumptions: (1) the mean 
flow is rectilinear, so that u = v = 0; (2) the mean velocity field is axisymmetric; and (3) all 

correlations (v i' vj') are axisymmetric and invariant in the axial direction. The first and third 
assumptions restrict the analysis that follows to the hydrodynamically fully developed region 
of  a tube. For steady, turbulent flows the condition is usually obtained within 10 tube 
diameters from the entrance of  the tube for Re ~ 10,000 (Ref. 12). 

( z o )  

For these assumptions, the continuity equation reduces to the statement that w = w (r, 
t). The momentum equations reduce to: 

r -Momentum: 

O-Momentum: 

I Op a (u .2)+ . - 0 (11) 
t9 ar  Or r 

• 2 . _o (~ v ' ) + -  (~ v') = o (12) 
Or r 

9 
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z-Momentum:  

O,,. J Ol, ~ a { aw \ ] 0 
- -  -I Z c o 2 c o s c o t  - r ( r  u ' ~ ' )  
al P az o r Or L f o r  / r O r  (13) 

The formulation o f  the problem is completed upon specification o f  the boundary 

conditions. For a no-slip condition at the tube wall it is required that 

w(R, t )  = 0 (14) 

Several other  restrictions must also be imposed: ( i)  any solution must be symmetric about 

r = 0; (2) any solution must be finite; and (3) all transient effects must vanish as the 

amplitude or frequency of  pulsation becomes zero. Since flow near the tube boundary is 

known to be laminar, all correlations must vanish at the wall. No initial condition will be 

imposed upon the problem. Any solution to be obtained will, therefore,  be quasi-steady and 

correspond to conditions existing after the initial transients have been damped. 

2.2 DIMENSIONAL ANALYSIS 

It is convenient and instructive to obtain a dimensionless system of  equations equivalent 

to those obtained above. To this end the following dimensionless independent variables are 
introduced: 

r z (15) = -- r = cot ; r/ 11 ; ~" = H 

The dependent variables are taken to be 

= i ' - P ~  ; V(r/,r) :- --" (16) 
pl ~ 2 U *  

where the friction velocity is 

/ 
<Uw> i 

U r = .I - p (17) 

(Angle brackets, < > ,  denote the average over a cycle of  the pulsation.) The reference 

pressure, p*, is taken to be the pressure at the entrance to the tube. The correlations are 
defined by 

V* V* 
I • 

R . .  v : ( 1 8 )  
z j |I .* 2 

10 
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Substitution of Eqs. (15) through (18)into Eqs. (I l) through (13) leads to the following: 

~-Momentum: 

gfl 0 11 II - R 
I I  II I I I I  v V . . . . .  , - 0 ( 1 9 )  

aT/ o77 7/ 

O-Momentum: 

r) Iluv II,~, 
1-2--=0 

aT/ ,7 (20) 

]'-Momentum: 

- -  ---- - -  - -  - ; -  ( ' O 8  T " t -  - -  - -  

R e v Or 0~" I t , - ,  7? 07/ 7-/ 

where 

FI 2 co (22) Re,.  - 
I, '  

is the dimensionless frequency or vibrational Reynolds number, 

r l c  U ~ l l  
(23) 

is the friction Reynolds number, and 

is the dimensionless amplitude. 

Z ( I  

A - (24) 
FI 

The amplitude of a pressure pulse will be determined later (see Section 2.3), but is of the 
form 

~1 (I, oo) 
,x - ( 2 5 )  .P fl,, (I. oo) 

11 
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where fit (1, ~ )  is the amplitude of  the time-dependent component  of  the wall pressure 

coefficient far from the entrance of  the tube and rio (l ,  ~ )  is the amplitude of  the steady 
flow component .  

in view of  these equations, it is clear that the velocity field in a fully developed, pulsating 
flow is given by a relation of  the form 

V V(r/, r, lle ~, Re~, A, Ap) (26) 

The friction Reynolds number is related to the conventional Reynolds number,  Re = 

2 < I ~ > R / p ,  where 0 is the spatially averaged velocity in the tube, by 

lit* = Re 

where Cf is the Fanning friction factor (Ref. 12). When the mean velocity < 0 >  = 0, the 

friction Reynolds number vanishes and must be replaced in the ] ' -momentum equation by 

the harmonic Reynolds number (Ref. 7): 

o t i Z  
]:re h ~' A [|e v 

V 

The velocity, pressure coefficient, and correlations for no mean through flow are thus 

nondimensionalized with respect to the harmonic velocity, Uh = o~Zo. 

2.3 SPECIFICATION OF THE PRESSURE FIELD 

Consideration must first be given to determining the form of  the pressure coefficient for 
various types of  pulsations. Although an exact formulation will not be obtained, the 

functional behavior of  the pressure field will provide sufficient information to allow a 

solution of  the momentum equations. 

The 0-momentum equation, Eq. (20), may be integrated immediately to obtain 

C 
I I . ,  - - ( 2 7 )  

r/2 

For the correlation to vanish at the tube wall (1,/ = i), it follows that C = 0 and Ru~ = 0 

everywhere in the tube. 

12 
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Direct integration of  the n - m o m e n t u m  equat ion,  Eq. (19), is also possible, and one 

obtains 

fl(r/,  ( ,  r) = 1 1 ( 1 , ( ,  r) ~ F ' f l (q ,  r) (28) 

where 

f 
r/ l ~  

-I"(T/, r~ = II,,,,(q, r) - It .... - 
I ~ clr/ 

Note that while the pressure varies across the tube in a turbulent  flow, this variation is 

independent  of  the axial coordinate provided the flow is fully developed.  For this case, 

moreover ,  it is reasonable to assume that  at any given axial station the wall pressure 

coefficient will exhibit a temporal  behavior similar to the excitation applied at the entrance 

to the tube. Consequent ly,  for a simple harmonic  pressure oscillation, 

f l ( , . ~ . ~ )  = C, C [ f l o ( I . ~ ) -  f l , ( I . . ) ~ o . ~ r ] ~ - C 2 ( r )  (29) 

where fl~ (i ,  oo) is the mean value over a cycle of  the wall pressure coefficient in the fully 

developed region and fll ( l ,oo) is the ampli tude of  the variation about  the mean.  At ~" = 0, it 

follows that 

C2[r)  = F/(I. 0, r) = fl ,(1, 0)- , - i l l ( I ,  0) cos r (30) 

if the waveform is undistorted.  From Eqs. (29) and (30) it follows that 

9 , ( I . ~ , r )  = ( : l ( l , , ( I ,  oo)(I , - A p c , , s r ) ~  i (1 ,0)(I  ~ A cos.") (31) 
o ]la~ 

From Eqs. (28) and (31), the . t ' -momentum equation becomes 

lie,,. 0r  -(.,~. Fie" l o ( l ,  ) (I -n- Ap ro.~ r) ,- - - i i ( : .  t . O b  T 

I 0 ( 0 _ ~ )  I 0 (32) 
r/ Or/ r/ - Fie" -r/ b'q-- (1"/I:lw) 

13 
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Nox~, the dimensionless mass flow through the tube is 

,1 
G* = <';'> - 2 z r l  <V'- r/tl T (33) 

,1 "o plJ*ll" 

If this value is to remain constant  over a cycle of  the pulsation,  it follows that  O < V > / O r  = 

0. Accordingly,  averaging Eq. (32) over a cycle leads to 

i10 C29 .o t l .  o~)._ , ,9 (rla<..____v~'~_ Re , _1 __.Oa ( q < R , , > )  (34) 
" rl Or I rtr I / 71 Or I " "  ' 

Multiplying Eq. (34) by rl and integrating gives 

112 
c) <V., Re" 7/ <ILL'"> = lle~ C 2 Q °  2 '  CI" (35) T/ 0~7 

Evaluating Eq. (35) on the centerline of  the tube shows that C4 = 0. Fur thermore ,  at the 
wall < R u w >  = 0 ; t h u s  

C 2 = 
2 oa<V> 

II ,." * fl,, ¢ 1, ~ 1 Or/  r/=] 
(36) 

From Newton 's  law of  viscosity it follows directly that 

So that  

O<V> 

Or/ r/=t 
.- _Re ~ 

2 (37) 
C2 = ~ ( I , ~ )  

¢I 

The pressure coefficient variation in the fully developed region is, thus,  

fl(r/,~', r) = - 2 ( ( t  4 An, cos r) + f lo ( l ,  0 ) (1  ~-Ap,, cos r (38) 
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From Eq. (38), the .C-momentum equation becomes 

lie, O r -  ~ ( r ) +  I c-~(70-v) R"* 0 (T/l|,, w) 
' a ,  ;i ,7 a,7 

A E D C-T R -80-31 

(39) 

where, for simple harmonic pulsations, the forcing function, .~f0"), is 

~ ( r )  = 2Re ~(l . - f fcosr )  

with a generalized amplitude defined by 

A Re~ 
C'~=A 

p 
2 R e *  2 

(40) 

(41) 

It is noted, moreover, that while Eq. (39) was obtained for the case where pressure 

pulsations and vibrations of a common frequency were the forcing function for the transient 
fluid motion, the case of tube vibration alone (Ap = 0) or pressure pulsations alone (A = 0) 
are also obtained. In fact, any pulsation for which 0fl/0~" = 5"(r) can be treated by simply 

expanding .~'(r) in a complex Fourier series, as will be shown in Section 2.5. 

2.4 SIMPLE HARMONIC PULSATIONS 

It has been shown that for simple harmonic vibrations of a tube and/or  pressure 
pulsations, the velocity field in axisymmetric, fully developed flow of a constant property 

fluid must satisfy a differential equation of the form of Eq. (39). Since this relation is linear, 
a solution is sought which will consist of a periodic motion superimposed on the mean flow. 
Thus, let 

VbT, r) = Vo(~) -. Vl(~, r) (42) 

Similarly, in analogy with the Boussinesq exchange hypothesis (Ref. 1 l), 

, 1 I Vo 
(43) 

Substitution of Eqs. (41) through (43) into Eq. (39) allows one to separate the ~'-momentum 
o equation into 

15 
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I(-7,-r:"") 0,7 '~vnl' i ,I I-~ , 7 - ~ j  211c* = o 
r/ d r /  

(44) 

for the mean velocity component,  and 

l i e ,  - - -  = t~l ~ c o - ' - r  + 1 - ,  ~7 
,gr 7/ Or/ (45) 

for the transient component of  velocity. The boundary conditions corresponding to Eq. (14) 
are Vo(I) = 0 and Vl(I,r) = O. 

2.4.1 The Mean Velocity Componen! 

Equation (44) and its boundary conditions are identical to the Reynolds equation and 
boundary conditions for fully developed, "s teady" turbulent flow in a tube. Since turbulent 

flow solutions rely on agreement with experimental data as well as ',,,.ith the governing 

equations, many semi-empirical solutions to that problem have been proposed. Due to its 
inherent simplicity, the solution proposed by Pai (Ref. 13) will be used. 

The velocity variation across the tube is given by 

"., - m rl 2 1 - -  '.. q 2 : n ~  
\ 

V , , ( r / )  .: ~; I +  , ( 4 6 )  
m -  I m -  I / 

where Vc = Vo(0). This relation is an exact solution of  the Reynolds equation if the eddy 
diffusivity is 

[ I '~ m - , ~  m ( . - , -  . I )  - - 2  - I 
= * (47) 

t.' ", [n, - I )  .4 (m  - -  I ) 

The empirical coefficients must be chosen so that the velocity profile accurately represents 
the experimental data. 
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If one differentiates Eq. (46) and evaluates the result at r/ = l, it follows that 

R e = 
s = - -  (48) 

2V 
c 

The parameters " s "  may be interpreted as the ratio of the wall shear stress in a turbulent 
flow to that in a laminar flow with the same centerline velocity (Ref. 13). For s = 1, Eq. (46) 

reduces to the fully developed laminar flow profile, and the eddy diffusivity vanishes. To 

evaluate " m "  it is only necessary to require that the mean velocity predicted by the profile 
should match those velocities experimentally observed. Thus (Ref. 4), 

V c 

m - ~ (49) 
2 - -  - t  

v e 

From these relations, it is readily shown that for any specified mean velocity, V', both 

empirical constants can be determined if the wall shear stress, <trw>, and the centerline 
velocity, Vc, are known. Figure 2, based on the data of Haberstroh and Baldwin (Ref. 14), 

presents the values of the empirical constants for 4,000 _< Re _< 200,000. For Reynolds 
numbers in excess of 10,000, both parameters are accurately described by the power law 
relations shown in the figure. 

Figure 3 compares Pai's relation (Eq. 46) to data obtained by Nikuradse for Re = 
23,000. The agreement is good over the entire tube radius although Pai's result 

underpredicts the experimental data by about l0 percent near the wall. Figure 4 shows the 

velocity profile and eddy diffusivity variation across the tube for several Reynolds numbers. 

It is noted that for high Reynolds numbers ~mo/V approaches a constant value across the 
tube. This observation will be of some importance in the following section. 

2.4 .2  The Transient  Velocity C o m p o n e n t  

Noting that cosz = Re (e it) suggests a solution to Eq. (45) of the form 

V l ( r / )  = R e [ f ( r / ) e  i r ]  (50) 

17 
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Making this substitution in Eq. (45), one obtains 

[ ] I -: f " t - -  I t- - - -  ~ - - - -  f ' - i  l i e  f - - d  ( 5 1 )  

where primes denote differentiation with respect to n. The boundary condition 
corresponding to a no-slip requirement at the ,.,,'all is simple f(I) = 0. 

Equation (51) can be solved by numerical techniques for any arbitrary eddy viscosity 

distribution. One procedure for obtaining such a solution is presented in Appendix A. The 

main objection to such solutions, however, is a lack of  definitive experimental data on the 

nature of the turbulent exchange process in pulsating flows. Bogdonoff  (Ref. 6) concluded 
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on the basis of hot-wire studies that the exchange process was altered but presented no 
quantitative information. Mickelson and Lawrence (Ref. 15), on the other hand, showed 

that acoustic excitations affect the speclrum of turbulence only in the immediate vicinity of 
the exciting frequency. Recent experiments by Clamen and Menton (Ref. 7) show that 

pulsating flows with no mean motion begin to exhibit intermittent turbulent behavior when 

the harmonic Reynolds number (Reh = A Re,.) exceeds !,000 and are fully turbulent for Reh 
> 3,000. None of these studies permits the exchange process to be modeled in detail 
although it is probable that turbulent exchange is increased in the presence of  pulsations. In 

the absence of the required information, some insight into the influence ot" pulsation- 
induced turbulence can be obtained by assuming that the eddy diffusivity associated with the 
transient velocity field is spatially invariant. By analogy to the eddy viscosity distribution in 

steady flows (Fig. 4), this assumption should approximate the physical behavior if the 
vibrational and harmonic Reynolds numbers are large. 

For Emilu = constant, Eq. (51) becomes 

where 

• , - !  ~ , _  ~ r{ , , ,  r = - d  ~' (52) f,, 

and 

A particular solution to Eq. (52) is 

[| c: 
v 

l~c,, = : (53) 
[n l 

I . 
Is 

t?, _ 
f 

nl 

I - i . m  
1..' 

(54) 

d'* d' 
r, = -i - -  -_ -i -- (55) 

I t ( ;*  R,, 
v v 

The homogeneous form of Eq. (52) is a modified Bessel equation of order zero. its solution 
is 

,,, - ) ( ) a r t  ~ (':2Ko i ~ a ' U  (56) 
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where a* = x/-ff~,, is commonly termed the frequency factor. The general solution to Eq. 
(52), then, is the sum of Eqs. (55) and (56). For the boundary condition f(1) = 0 and the 
constraint that f(7/) must be finite for all values of ~/, 0 _< ~ _< 1, the general solution may be 

f(r/)  i ~ i, lo(i½ a* r]) 1 i = - -  (57) 

/ '  

written as 

It is convenient to express this result in an alternative form. First, it is noted that a 

modified Bessel function, l~ (it/2x) may be expressed in terms of the Kelvin functions ber~x 
and bei,x by (Ref. 16) 

It. , ( i  ~ x )  = bervx + i beivx (58) 

An equivalent form of Eq. (58) is the polar representation 

lv(i~'~x) = Mv(x) exp [ i Ov (x) - Vrr 

where the modulus is 

and the phase is 

--I beivx 
0 v (x) = tan 

burvx 

Substituting Eq. (57) into Eq. (50) along with the definition given by Eq. (59) gives 

(59) 

V 1 (r/, r) = ~ sin r o sin r--  0 o ( a *  7/) - 0 o ( a * )  
lie v ! Mr, (a*)  

(60) 

Detailed discussion of this result will be deferred until Section 3.0, but two effects are readily 

apparent from the equation. First, the magnitude of the transient velocity is directly 
proportional to an attenuated value of the generalized amplitude. For a fixed value o f ~ ,  
high frequencies tend to diminish the effect of pulsations. Secondly, the fluid velocity is out 
of phase with the excitation, ~ cos r, by an amount which varies with location in the tube. 
On the centerline of the tube, it is readily apparent that the phase lag approaches 90 deg. 
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2.5 PULSATIONS OF ARBITRARY WAVEFORM 

In many cases of engineering significance, the forcing function, .~(r), of Eq. (39) is a 

periodic function of greater complexity than the simple harmonic pulsation discussed above. 

If, however, the function is bounded and has a finite number of discontinuities in the 
interval P -- 27r/to, it is known that a Fourier trigonometric series will converge to the value 
of the forcing function in the interval. Consequently, many practical waveforms can be 

represented by a Fourier series in the various harmonics of the basic frequency, to. 

(Turbulent fluctuations, however, are aperiodic and require a Fourier integral approach.) 

Considering the approach of the preceding section, it is desirable to express the forcing 
function by the complex series 

~(r) = J~ + 2 ~ J~ einr {61) 
'} t= l  

where 

}{, = ~ f " ' ~ v  ~fCr')e-lnr'dr" (62) 

In Appendix B it is shown that this expansion is a special case of the more general complex 
Fourier expansion. It applies for any Y(r) which is real and satisfies the Dirichlet conditions. 
The limits of integration in Eq. (62) extend from an arbitrary point C of a cycle to the initial 

point of the succeeding cycle while the summation indices are harmonics of the basic 
frequency of the oscillation, to = 2~-/P. 

A form of the velocity field is sought which is consistent with Eq. (61). Accordingly, let 

~' (17, r )  =- W o + ~ V n (17) e inr (63) 
n--I 

Similarly, the correlation function may be written as 

E 'v 1 I (U ] ~ (~) d inr 
Ru"r !1 Rt: + {too d~ ~i'n! V n e (6~)  
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Substi tut ion o f  Eqs. (61), (63), and (64) into the axial m o m e n t u m  Equat ion,  Eq. (39), 

leads to a separation of  variables in which the following relations must  be satisfied: 

, , , [ (  '-';' )""ol 
17 <ii7 q I + 7- d q . ] i  }(o -- 0 (65) 

' E( / 1  i ~ J II tnil dVn 
- 7/ I t - - -  " - i n  tie V n ÷ 2}(n e inr= 0 

~ ,It/ v ~ v 
(66) 

Equat ion (65) governs the mean fluid mot ion  and is identical to Eq. (44) for Re* = 

.I-to/2. Since the boundary  condit ions to be satisfied are Vo(l) = 0 and Vn(l) = 0, the 
solutions proposed in Section 2.4.1 for the mean mot ion are applicable here as well. For Eq. 

(66) to be valid at all times, it follow, s that  each harmonic  must  obey a relation of  the form 

o r  

~ ~J+-7-. ~ -~,,l~o.v =-2~,, 

( q"i)x.;,, I (  Cml ~qqnt'~V" Be V --gJ-( n (67) 
I 4 - 7 .  " +-r/ I : - -  + v v  _ n - i n  v n "- - 

The similarity of  Eqs. (67) and (51) is readily apparent ,  as is the observation that again a lack 

of  informat ion exists on the eddy diffusivity associated with the transient fluid mot ion .  As 

before, the heuristic assumption will be made  that  the eddy viscosity, Cml,is spatially 

invariant. The  solution to Eq. (67) is then 

" i 
V - ' ~ e - 1 .~ ( 6 8 )  

" .m.  ~ a *  ! 
v M o C ,1 ) 

x 
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where 

•/ ,, I:,. (69) 
t V 

8 n = ~m 1 
I + ---- V 

Introducing Eqs. (68) and (46) into (63) completely specifies the velocity field in the tube 

at any time. For computational purposes it is expedient to compute the elements of Eq. (63) 

individually and sum the results. Additional savings in computational time are obtained if 

the various coefficients can be related to the coefficients of a Fourier trigonometric series 
(see Appendix B) so that a Fast Fourier Transform (FFT) algorithm (Ref. 17) may be used. 

With this in mind, note that Eq. (62) may be rewritten as 

2J{n = a - ~ a , ,  (70) 

where 

2f," = - -  An p 3r(r ") cos nr'dr" n = 0. 1 , 2 . . .  
(71) 

and 

j~O P 2 C -  • • 

B , -  ~; .t(r )--,i,i nr'&" n = 1 . 2 . . .  (72) 

From Eq. (70) and DeMoivre's relation 

e ix = COS X -w- i sin x 

it can be shown by a straightforward substitution that the real part of the n th harmonic of the 

velocity may be expressed as 

ReIVn(r / )  inr]  l { M " ( a * T / I  I 1 t  (73) 
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where 

Anl ( r )  = B n cos nr - An sin nr (74) 

An2(r)  = A n cos nr + B n sin nr (75) 

A 0  n = 0 o [ a n r / I -  0 o a n ) (76) 

An equivalent result to Eq. (73) is 

An f s i n  nr 
V 

]:1. f - -  - -  C O R  nr 
n Ii," 

v 

M ( a* r/~ 
f l  K~, 

M ( a * )  
, I  " [ I  

~,I ( a *  T/) 

Me, ( a* I 
' I I  ' 

[ Oo, - Oo (.;)]} 

(77) 

As in the case of simple harmonic oscillations the amplitude of  the transient component  is 

attenuated at high frequencies, and phase lags exist that depend on radial location and 

frequency. A more detailed discussion of  these results and, in particular, the effect of  

waveform on the solution, is presented in Section 4.0. 

3.0 THE VELOCITY FIELD FOR SIMPLE HARMONIC PULSATIONS 

The response of  the fluid to a pulsation of the form described by Eq. (40) is simply the 

sum of  Eqs. (46) and (60). Although this sum is a closed form analytic solution of  the 

transient Reynolds equation for fully developed flow, the complexity of the equations and 
the number of auxiliary relations to be solved make its evaluation practical only by use of  a 

computer.  A program identified as PULSAT has been written for an IBM 370/165 digital 

compt, ter to evaluate the velocity field in fully developed, laminar or turbulent, steady or 

pulsating flows of simple harmonic waveform. 

3.1 THEORETICAl ,  RESULTS 

The radial dislribution of  velocities in a flow with a mean Reynolds number o f  10,000 is 

shown in Fig. 5 for several times during a cycle of  pulsation. At T = 0, the velocity profile is 
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seen to correspond to steady flow in a tube at this Reynolds number except for a thin layer of  

fluid near the tube boundary where the velocity increases rapidly to a value in excess of  that 

observed on the centerline before decaying to zero at Ihe wall. It should be recalled that, due 

to the quasi-steady nature of  the solution, r = 0 corresponds to the start o f  a cycle but not  to 

the initial time at which pulsations are induced. With increasing values of  r the magnitude of  

the velocity increases until the maximum value is obtained at r = 90 deg. The magnitude and 

extent o f  the velocity increases near the wall are also seen to ,,.ary with time during a cycle. 

After the maximum velocity is obtained,  the velocity is seen to decrease until the minimum 
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values are obtained at r = 270 deg. It is apparent and will be seen in later results that during 

a cycle there are times at which the core velocities are positive while near the wall the velocity 

is negative. 

Since the forcing function is a maximum at r = 0 and a minimum at z = 180 deg, the 

centerline velocity lags the forcing function by 90 deg. This behavior was anticipated on the 

basis o f  Eq. (60), which shows that the phase lag depends on both the frequency parameter, 

a* = ~ and the radial location, r/. In Fig. 6, the phase lag is plotted as a function of  7/ 

for two vibrational Reynolds numbers. The fluid phase behavior is of  significance in any 

application in which a sec6"ndary response to the forcing function (such as particle dynamic 

effects, flow-induced vibrations, etc.) are of  importance. A striking example is that some 

techniques proposed for sizing particles contained in a flow (Ref. 18) relate the particle drag 

to pressure pulsations imposed upon the flow. Failure to properly account for the fluid 

behavior could lead to serious errors in such determinations. 
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1.00 

The effect of  the mean throughflow Reynolds number on the velocity observed at 

various times during a cycle in which pulsations are vibration-induced is illustrated in Fig. 7. 

As would be expected, the gross effect of  increasing Reynolds number is to diminish the 

overall influence of  the pulsation. Indeed, for a fixed value of  A and Rev, the transient 

component  of  velocity, Eq. (60), is independent of  Reynolds number provided the turbulent 

structure is unaltered or varies independently of  Reynolds number. 
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Specifying the amplitude of  the vibration at the tube boundary, A, is not, however, 
equivalent to specifying a constant generalized amplitude, as may be seen from Eq. (41). 

Since the transient velocity component profiles normalized with respect to the centerline 
values V:(0,r) are identical for all Reynolds numbers and vibrational Reynolds numbers, the 

effect of  amplitude may be studied by simply considering the magnitude of  the centerline 

velocity. This evaluation is facilitated if the radial distribution fucntion of  Eq. (50) is 
written as 
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r(r/) = fr(r /)  + i f i (z l )  (78) 

where, from Eq. (57), 

{ I l} ('f ~l,, l a  * r/) 
fr(r/) = II,, " si .  Oo(a ~) - Oo(a¢ 7/) (79) 

v M , ( a * )  J 

and 

f i ( r / )  = o co~  . ( a * )  - O o ( a *  r/) ( 8 0 )  
I M , ( a *  ) 

The transient velocity component  is then, simply, 

Vl(r/. r) = f r C O S r -  f, sin r (81) 

Various aulhors (Refs. 3 and 6) define the strength o f  pulsation as the ratio of  the 

maximum velocity amplitude on the centerline of  the tube to the mean throughflow velocity. 

in the present notation, 1his may be written as 

S- = 
V 1 ( O ,  r * )  

0 

(82) 

where r* is the time at which the maximum value of  the transient occurs. From Eq. (81), 

Vl(r/,r) attains a maximum value for 

f (r/) 
r*  = tan -1 " 

fr (T]) 

The corresponding maximum centerline value can be obtained as (Ref. 4) 
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I1 " I 
co'-, f') ( a  ) I 

~I~ 2_ ~' (83) V I ( 0 .  r ' )  = I ! , . '  M , , ( a * )  M ( a * )  

For all but extremely low frequencies, the modulus  Mo(a*) is extremely large, and the 

bracketed term in Eq. (83) approaches  unity. From the definit ion of  the friction Reynolds 

number  and the mean throughf low Reynolds number  the strength of  pulsation is then 

S. 2 ('~ H,..* 
I~,, R,.. (84) 

Y 

From Eq. (41) it is readily apparent  that a constant  pulsation strength is obtained in a 

vibrating tube (Ap = 0) for 

:% I|t: 
v 

s = (85 )  
I|,: R, '*  

Similarly, the strength of  pulsation for pressure-induced oscillations (A = O) is 

2 A Jh: ~ 
it ~ - -  O R,: I~,: 186) 

Since the friction Reynolds number  is related to the mean Reynolds number  through the 

Fanning friction factor (see Section 2.2), one of  the parameters can be eliminated from these 

equations.  For example, for turbulent  flow in a pipe (Ref. 12), 

- 1 . .  5 
C r = 0.0.1,6 Re (Ro < 105'1 

Thus  

A Ii,; 
.q = 13.19 v (87) 

I| e I. 9 

for vibrations, and 
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A 
S - 0.1517 P (88) 

l i e  l i e  0. [ 
v 

for pressure pulsations. It follows, therefore, that the effect of, pulsations is dimished at 
large Reynolds numbers for either pressure-induced or vibration-induced oscillations 
although this trend is much more pronounced in the latter case. On the other hand, high 
frequencies increase the pulsation strength for vibrations but attenuate the effect of pressure 

pulsations. 

The effect of frequency on the velocity profile in the vicinity of the tube wall is shown for 
several vibrational Reynolds numbers in Fig. 8. Since these profiles, as well as the centerline 
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velocity (Fig. 9) are, ostensibly, independent of the mean flow characteristics, the trends are 

applicable for all Reynolds numbers. It is seen that as the frequency is increased the local 
maximum "moves"  nearer the wail. This phenomenon has been termed the "annular"  
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Figure 9. Tempora l  and ampl i tude  dependence of  t ransient  
center l ine veloci ty .  

effect and has long been of interest to fluid dynamicists (Refs. 1 and 9). The actual location 
and magnitude of the maximum during a cycle is, however, a function of time, as could be 
inferred from Figs. 5 and 6. To illustrate the frequency dependence of the maximum velocity 

location, it is useful to consider the root-mean-square (rms) value of the transient velocity. 
From Eq. (81), this is simply 

+ = 

2 
(89) 
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The variation o f  the rms velocity is shown in Fig. 10 for a range of  vibrational Reynolds 

numbers at a mean flow of  Re = 10 ~. It is seen that, for this vibration-induced example, the 

rms velocities increase by nearly three orders of  magnitude when the frequency is varied by a 

factor o f  20. (Note that for water in a 1-in.-radius tube, the corresponding circular 
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Figure  10.  

frequencies are 0.1 Hz at Rev = 100 and 20 Hz at Re,. = 20,000. For air, Re,. = 100 implies 

that f = 0.4 Hz.) The annular effect is clearly seen, and the maximum velocity location, 7*, 

is very near the wall at large values of  Rev (Fig. 1 i). It can be shown, moreover (Ref. 19),that 
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r/~ = I 3 .2 .5  ( 9 0 )  
tl* 

This result is of importance in calculations of pulsating flow characteristics since (1) 

important details of the flow may be lost if the computational grid is not varied as the wall is 
approached, and (2) alterations of the turbulent exchange process may be related to the 

location of these maxima (Ref. 4). 

1.0 

4~ 

t~ 

O ° m  

E ° m  
x z'a 

~E 

° m  

0.8 

0.6 

0.4 

0.2 

0 b 

10 

Figure 11. 

~* = 1 - 3 . 2 5  

100 1, 000 10, 000 100, 000 

Vibrational Reynolds Number, Re v 

Variation of transient component maximum 
value location with frequency. 

Both the analysis and the PULSAT program allow the determination of the velocity 
profile for the case where a constant eddy viscosity is associated with the velocity transient. 

While decidedly heuristic, the assumption leads to some interesting results, as may be seen in 
Fig. 12. The velocity profiles shown during the first half-cycle of a pulsation have been 

computed on the basis that (I) only molecular diffusion occurs (emt = 0) and (2) the 

turbulent diffusivity is equal to the spatial average of the eddy viscosity associated with the 

mean flow, emt =emo. A decided effect of enlt ¢: 0 is observed at all times. In general, since 

the governing parameter for the altered case is 
Ih" 

v 
lie.* 

f 
n;  I 

[ + - - -  
V 
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the solution behaves as though it corresponds to an ~,111 = 0 flow at lower frequencies. The 

phase shift, moreover, depends on Re~. I/2, and thus events occur at different times in the 

cycle than would be expected if alteration of  the diffusion mechanisms were not present. 

f ~  

Er~ 1 = Emo 

~ - -  Eml = 0 

- 150 
I..- 

~-- T =90de9 - - -  x ~ ~\\ 

.~ 100 

-517 
0 90 0.95 1.0 

Radial Location, r/ 

Figure 12. Near-wall velocity profiles for turbulent 
exchange modification. 

3.2 COMPARISONS WITH EXPERIMENT 

Data on the detailed variation of the velocity field in pulsating flows are extremely 

limited although considerable experimental information on the effect of  pulsations on heat 

transfer exists (Ref. 8). Richardson (Refs. 1 and 20) measured the rms velocity field in a 

circular tube in the absence of  a mean flow component  and identified the annular effect 

discussed earlier. Additional hot-wire studies were made by Bogdonoff (Ref. 6) and 

Mohajery (Ref. 21) for air flows at mean Reynolds numbers in the range from 50,000 to 

100,000. Both investigations showed that pressure pulsations altered the eddy viscosity 

distribution in the flow, but whereas Mohajery concluded the effect was not appreciable at 

any radial location in the tube, Bogdonoff  observed significant increases in eddy viscosity 

near the tube wall. in the latter study, however, the author observed that this was a tentative 

result since it was difficult to compensate for probe blockage and compressibility effects. 

Recently, Clamen and Menton (Ref. 7) used a hydrogen bubble technique to study water 

flows in a vibrating tube from Re = 0 to Re = 2,900 for a range of  amplitudes and 
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frequencies. Since these data conform better to the incompressible assumption of  the present 
analysis, the comparisons that follow will be based on their data. 

Figure 13a compares the velocity distribution measured in a purely oscillatory flow (Re 

= O) to the present theory for several times during a cycle. Clearly the theory and experiment 

are in good agreement at the times shown with the exception of  the small amplitude 

oscillation for 1" = 30 deg. Since the hydrogen bubble technique requires synchronization of  
a flash photograph with a particular cycle time, it is possible that the discrepancy is due to a 

timing error. (For ~ = 1.2 Hz, a 0. I-see error would readily account for the difference.) In 

Fig. 13b, theory and experiment are again compared for a mean flow Reynolds number in 

the laminar Ilow regime (Re = !,535). For both cases the agreement is excellent. 

A final comparison is made in Fig. 14 for a turbulent mean flow at Re = 2,900. At r = 

O, the present theory represents the flow accurately and represents a decided improvement 

over a laminar flow theory used in Ref. 7. For later times in the cycle, however, the turbulenl 

theory grossly overpredicts the measured velocity. While this may be due to a deficiency of  

the theory, it is more likely due to one or more experimental factors. Clamen and Menton 
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Figure 13. Comparison of experiment and theory in 
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note that at turbulent Reynolds numbers the I l o w  was "highly dis turbed" so that the 

photographic representation o f  the velocity profile was smeared. Under those conditions the 

hydrogen bubble technique shows a range of  velocities so that the values obtained are highly 

dependent upon the fashion in which the data were reduced. The possibility o f  timing errors 

also exists, as was noted in the discussion of  Fig. 13a. For o~ = 1.12 rad/sec,  the 

displacement in centerline velocity from the theory could be accounted for by a time delay of  

0.4 and 0.2 sec for r = 90 and 210 deg, respectively. While such shifts seem excessive, some 

credence is lent to the possibility by comparing the theoretical results for 7" = 60 deg to the 

data for 7 = 90 deg. The agreement is excellent for T/ _< 0.80. 
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Since the model developed in Section 2.4 allows the investigation of a uniform alteration 

of  the turbulent structure of the flow, such a comparison is made in Fig. 14. Clearly the 

assumption that ~ml = 0 is adequate at z = 0. At r = 90 deg (or 60 deg), however, enll = 0 
= 3  A leads to an overprediction of the data obtained near the wall. By letting enq emo, the 

velocity profile is damped relative to the undisturbed (eml = 0) profile for the wall region. 

The results are in error at intermediate locations 0.4 <_ ~ _< 0.85, however, so that an 

assumption of era1 = constant fails to predict the velocity distribution across the tube. From 

these limited data it appears that an accurate model of the alteration of turbulence structure 

must take into account the radial variation of the exchange coefficient. 

4.0 THE VELOCITY FIELD FOR ARBITRARY WAVEFORMS 

The analysis of Section 2.5 shows that the response of the fluid velocity to a forcing 

function of arbitrary waveform can be obtained by expanding the function in a complex 

Fourier series. Each harmonic of the transient velocity can then be obtained in terms of the 

various harmonics of the pressure disturbance. The amplitude of the velocity harmonics is 

determined by the Fourier coefficients required to describe the forcing function. A computer 

program (ARBPULSAT) for evaluating the velocity response has been written for 

performing such calculations. The results of computations performed via ARBPULSAT for 

several waveforms are described in the remainder of this section. No attempt has been made 

to comprehensively study the effect of waveform on the velocity distribution in a tube, but 

such studies are within the capabilities of the program. 

4.1 EFFECT OF WAVEFORM 

To study the possible influence of waveform upon the velocity distribution in pulsating 

flows, four different types of symmetric waves were considered. In each case, the initial and 

final third of a cycle were considered to be at a constant pressure while the pressure varied in 

the central portion of a cycle to produce (I) an instantaneous pressure change followed by a 

later instantaneous decay, (2) a linear rise followed by later linear decay, (3) a linear rise to a 

maximum value followed immediately by a linear decrease, and (4) a half-cycle sinusoidal 

variation from the initial pressure. These pressure variations will be called, respectively, (I) a 

square wave, (2) a trapezoidal wave, (3) a triangular wave, and (4) a sinusoidal wave in the 

following discussion. 

Figure 15 shows the four waves which have been chosen so that in every case the mean 

pressure coefficient over a cycle corresponds to a time-averaged Reynolds number of l0 g. 

Three amplitudes are shown in each figure, corresponding to peak-to-undisturbed pressure 

amplitudes of fit/rio = 100, 10, and 1.5. Also shown in the figures are the Fourier series 
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representations of  the maximum ampli tude wave for 2,048 (21 t) sine and cosine t ransforms,  

Eqs. (71) and (72). In all cases except the square wave the greatest departure  of  the computed  

value, fir, f rom the input function,  9~, is Jill - flFI "< 1.0. Since the min imum value of  

fl~ ~- 25, the error in representing the funct ion at any point  of  the cycle is less than 4 percent 

and  is typically better than 1 percent.  Even better accuracy was obtained for lower values of  

the ampli tude.  The square wave is discont inuous at r = 120 and 240 deg and converges to 

1/2 (ill + flo). Since the computed  limit differs f rom this value by approximately 1/3 it is 

clear that  more  coefficients are necessary to accurately describe the square wave in the 

immediate  vicinity o f  the discontinuity.  Since this is a localized error, it was not deemed of  

sufficient impor tance  for the present study to warrant  the addit ional computa t ion  time. 

(Since an FFT routine computes  2 n coefficients, the next possible choice was to double the 

number  of  coefficients used.) 

N 

The centerline transient velocities, Vl(0,r) = E V,(0,r),  corresponding to the various 
' t = l  

waveforms are shown in Fig. 16. it is seen that  regardless of  waveform the centerline velocity 

histories are strikingly similar in both shape and ampli tude.  The  observed " s a w t o o t h "  

history was " s omewha t  unexpected and immediately raised a question as to whether  the 

velocity field converges as rapidly as the series representation of  the pressure transient. To  

explore this question it is useful to rewrite the forcing function as 

.'-f.~r! = .'To + .~' l , : l  (91) 

From Eqs. (61) and (70), then,  one can write 

o r  

~ l ( r )  = ~.d 
n =  l 

(A n c o s  nr  - B , i s i n  n r )  

where 

~ l ( r i  - 
n = l  

( ' n  c o s  ( n r  - 6 n /  
(92) 

C =4,X~,. 3~ 

B n 
(,6r, = Lan -1 

A n 

(93) 
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On the centerline of  the tube a similar result can be obtained if it is noted that 

Mo (an*) > > > ! for all but extremely low frequencies. Thus for Re~ > l, Eq. (77) reduces 

to 

N 

V] (0, r) t ~ C 
= - -  " sin (nr - 6 n  ) ( 9 4 )  

~ l ,  v n 

where Cn and ~,, are again given by Eq. (93). Clearly this result converges more rapidly than 

:~lO') so that for any identical number of  terms the series for Vl(0o) will provide a better 

representation of  the result than does that for F,0"). The expected rapid convergence o f  

Vl(rt,t) is substantiated by Fig. 17where the transient velocity corresponding to the partial 
% 

sums, Z Vn('rI,7) is compared to the result obtained for N = 21 ~. Convergence ',,,.as least 

rapid at r = 120 deg, which is where the pressure pulse representation was least accurate. 

Even in this "w or s t "  case, the error for as few as 50 terms of  the series was less than 0.65 

percent and was virtually unaffected by radial location, h is concluded, therefore,  that the 

velocity response observed on the centerline of  the tube is an analytically valid result and is 

not due to any computational deficiency of  the series representation. 
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Some insight into the nalure of  Ihe behavior of  the centerline velocity is gained if the 

following integral representation is considered. Left f(r) be an arbitrary function 

representing the variation of  the pressure around the mean and consider the integral 
t ransform 

g(r)  = go - ' ' a f o  rf(rjdr (95) 

If fit) = a cos r, a simple harmonic  forcing function,  Eq. (95) becomes 

g ( ~ )  = a a ~ o s r  (96 )  

From Eq. (60), the fluid response on the centerline of  the tube is then 

t"l "~111 r 
~"l(O, r) = It,~, ( 9 7 )  

so that the two results are identical if at = Re,.- n and go = 0. For the square wave, Fig. 15, 

fir) = !/3(90 - fl]) for the initial and final portions of  the cycle while for 2~'/3 _< r _< 4~'/3, 

fir) is equal to 2/3 (flu - 9o). The  t ransform thus is of  the form 

g ( ~ )  = g,, ~. a K z ( 9 8 )  

so that the centerline velocity varies linearly in each region of  the pulse. The slope atK is, 

however, negative in the inilial and final stages since flo is less than fin and is positive in the 

central region. The initial and final regions of  the other waveforms also lead to a linearly 

decreasing function,  but the response to the trapezoidal wave is parabolic during the linear 

rise and decay at the beginning and end of  the pressure pulse. The triangular and sinusoidal 

waves, moreover ,  vary in a parabolic and cosinusoidai fashion, respectively, th roughout  the 

central region of  the pressure pulse. The  centerline transient velocity in a pulsating flow is 

accordingly given by a simple integral t ransform of  the excitation for all waveforms.  This 

behavior is observed at mos! radial locations in the tube so that molecular or turbulent  

diffusion is significant only in the vicinity of  the tube wall. This is borne out by Fig. 18, 
where the fluid response to a square wave is shown at several radial locations in the tube. For 

1'/ < 0.90, the velocity history is nearly independent  of  location, but near the wall significant 

departures both in the magni tude and waveform are observed. It is concluded,  therefore,  
that viscous interactions become impor tant  near the boundary.  

It is clear also that phase shifts are characteristic o f  the fluid response for the various 

waveforms studied, if  one defines the phase shift as the lime delay between the a t ta inment  

o f  max imum pressure and velocity, a comparison of  Figs. 15 and 16 shows that the 
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centerline phase lag varies from 40 deg for Ihe sinusoidal variation to 120 deg lbr the square 

wave. It is apparent from Figure 18, moreover, that the phase lag is a function of  radial 

location, as x~.as shown for simple harmonic oscillations. 
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Figure 18. Comparison of velocity response to square wave 

at several radial locations. 

The radial distribution of  the transient velocity component for square and triangular 

waves is shown in Fig. 19. The annular flow phenbmenon noted for harmonic oscillations is 

retained in both cases, and the magnitude of  the maxilnum velocity is relatively insensitive to 
waveform for all excitations .studied. A slight variation in the location of  the maximum 

velocity point does resull, however, for different forcing functions. Figure 20 illustrates the 

effect of  vibrational Reynolds number on the velocity distribution obtained in response to a 

trapezoidal waveform. Clearly, increasing frequencies move the maximum velocity point 

nearer the wall and also decrease the amplitude of the velocity transienl. Both effects were 

also observed in Section 3.0 for a simple harmonic oscillation. The lowest frequency case 

(Re,. = 800) compares the square and trianguhu wave results to those obtained Ibr the 

trapezoid and emphasizes that for comparable amplitudes (fl l /f lo)the results are very 

insensitive to waveform. 
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it was noted in Section 3.1 that a convenient measure of the gross effect of a pulsation 

was afforded by the strength of pulsation, Eq. (82). The complex waveforms used in this 

section do not lend themselves to a simple evaluation of pulsation strength since 

each term of Eq. (94) achieves its maximum independently of the others when 

r* = l /n  [[(2m -1)/2] 1" + #hi- For the higher harmonics, then, r* is approximately equal to 

zero, but the phase lag of the lower frequencies must be evaluated individually to determine 

the time at which Vl(0,r) is a maximum. This result is obviously dependent upon the 

waveform considered. For the waves considered in this section,, however, the centerline 

velocities achieve a maximum at nearly the same time in the cycle and have nearly the same 

amplitude. Since, as can be seen in Eq. (94), only the lower harmonics contribute 

significantly to Vl(0,r), it seems apparent that the fluid response is dictated only by the lower 

frequency components of the series. 
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4.2 Fluid Response to a Fluttering Valve 

A final illustration of  the utility o f  the computer  program developed in this study is 

afforded by considering a basically steady tlow that is perturbed at regular intervals. Such a 

situation could conceivably be caused by a fluttering valve or a faulty pressure regulator 

located in a flow system. Three illustrative cases are shown in Fig. 21 where a 0.I-see 

pressure excursion occurs asymmetrically one, two, or three times per second. As in the 

preceding section, the mean flow Reynolds number is maintained at Re = 104; thus the 

relative amplitude o f  the pulse decreases as the repetition rate rises. 
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The fluid response on the centerline of  the tube is shown in Fig. 22. For a single 

repetition the velocity history is similar to the square v,.ave studied earlier, but as the 
repetitions are increased, the velocity history increases in complexity. For each additional 

repetition an additional local maximu,n (corresponding to the trailing edge of  the added 
pulse) is obtained. Although the maximum value of the pressure coefficient has decreased 

with additional cycles, the absolute maximurn centerline velocity increases, with the three- 

cycle result showing a 50-percent increase over that observed for a single cycle. This result 

implies that waveform c a n  be influential in determining the fluid response to a pulsation. 

The radial velocity distribution for the three cases is shown in Fig. 23 for a single lime of  

the cycle (r = 90 deg). While all the velocity profiles exhibit a characteristic annular shape, 

significant variations in amplitude are obtained for differing repetition rates, it is noted, 

moreover, that as the repetition rate increases, the local velocity maximum occurs nearer the 

wall, indicating that the vibrational Reynolds number is effectively higher than the basic 

value for the case. 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

An analysis was performed and computer programs were written to allow assessment of 

the velocity field in the fully developed region of  a pipe for laminar or turbulent, steady or 
pulsating flows. For pulsating flows no restriction on waveform or the origin of the 
disturbance is imposed except thal it be applied longitudinally. 

For any waveform investigated, it was shown that, in the core of the pipe, the fluid 

velocity at any time during a cycle is an integral transform of the imposed pulsation. Near 
the tube wall, viscous effects become important, and the velocity may exceed that observed 
on the centerline. The extent of this annular flow region is dictated solely by the vibrational 

Reynolds number, the effect being confined nearer the tube wall as Re,. increases. The value 
of the maximum velocity relative to the core value varies in a complex fashion, initially 
increasing with frequency but decreasing for high frequencies. The overall level of the 
transient velocity, however, varies directly with a generalized amplitude and decreases with 
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vibrational Reynolds number. Limited comparisons of the analysis with published data 

obtained for a vibrating tube show good agreement for no mean flow and laminar mean 

flow cases. In turbulent mean flows, however, the analysis agreed with the data at some 

times during a cycle but overpredicted the effect of pulsations at others. A crude estimate of 

the effect of alteralion of the turbulent exchange mechanisms was found unsatisfactory for 

explaining the discrepancy. 

A limited study of the effect of waveform on fluid response showed that the above 

general observations were valid for any waveform. For symmelrical waves it was found that 
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the magnitude and radial or temporal variations in velocity were, in a practical sense, 

virtually independent of  waveform. Asymmetric waves, however, were shown to exhibit 
significantly different behavior. 

The computer programs developed for the study were found to be satisfactory although 
several improvements are warranted. First, a test of the convergence of the Fourier series 
and velocity series would be of benefit in reducing the arbitrary waveform execution time. 

Secondly, several features of the harmonic oscillation code, such as strength of pulsation, 
rms velocity, and a vibrational Reynolds number calculation, should be included in the 

arbitrary waveform code. Finally, both programs should be extended to provide computer 

plotting of the results. It should be noted, moreover, that the steady flow routine 

incorporated in either program affords a simple, fast, and accurate method for computing 
the velocity distribution in fully developed laminar and turbulent flows. 

The present study has clearly shown that the complexity of time-dependent flows for 
even a relatively simple case precludes the extrapolation of steady flow results into the 
transient domain, it is recommended, therefore, that work be continued at AEDC on 
transient flow phenomena. Two (ideally, parallel) approaches are suggested: (1) the present 
"exact" analysis should be extended to (a) treat the developing pulsating flow in a tube and 
(b) account for" turbulent exchange mechanisms by the method of Appendix A; (2) time- 

dependent numerical solutions of the governing equations should be developed since they 

offer the only practical long range, general solutions, in addition, consideration should be 
given to longer range projects which (1) treat compressibility phenomena in transient flows 

and (2) obtain basic data on the effect of flow oscillations of various waveforms on the 

velocity field, turbulent structure, and skin friction. The first study is of importance since 
compressibility effects can have a significant effect on the velocity field development 
because wave propagation characteristics can be altered and secondary flows induced. An 

experimental program is required, moreover, to serve as a guide for modeling the effect of 
pulsations on turbulent structure. In particular, little or no data exist on the effect of 
waveform on the turbulent structure in pulsating flows. 

Finally, it has been shown that flow pulsations can have a profound effect on heat 
transfer. Although myriad experiments have been performed and analyses presented, no 

definitive conclusions can yet be offered on the effect of pulsations on heat transfer {Refs. 4 

and 8). An understanding of the mechanisms involved could possibly lead to revisions in the 
design of heat exchange devices. 
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APPENDIX A 
FORMULATION FOR ARBITRARY EDDY VISCOSITY MODEL 

The radial distribution function for the transient velocity component ,  f(~), is given by an 
equation of  the form 

af"4 f l f ' - i y f  = -l~ (A-l) 

where primes denote differentiation with respect to ~ and 

r 

a(r/) = l~ ~mi (A-2) 
V 

rm'I (A-3) /3(~) ÷ 

y = Re,, (A-4) 

In general, f(7/) is a complex function and may be written 

r(,1) = fr('7) + ir~(0) (A-5) 

where fr(•) and fi0/) are the real and imaginary parts, respectively, of  the function. 

Substituting Eq. (A-5) into Eq. (A-l) and requiring a, or, ~/, and 3' to be real functions 
leads to the following simultaneous equations: 

-a = M;÷/Bf~'+ Yfi" (A-6) 

fr = a f~.., ~ f; (A-7) Y 

The real part of  the distribution is thus determined once fi and its derivatives are known. 

Differentiating Eq. (A-7) and substituting in Eq. (A-6) leads to the following fourth- 
order differential equation: 

A(7/) fi (Iv) + a(r/) fi (III)+ C(r/)fi (11) + D(r/)fi (I) + g f  i = - F  (A-8) 

53 



A E D C-TR -80-31 

where 

9 

A(r/) = a" 

B(~) = 2a(='+ ,8) 

c:¢..~) = - ( , . , "+  2 ~ 9  , -~( , , ' - , -  8) 

D~,I) = a~  " ,-fl/3" 

2 E = y 

) (A-9) 

F = ~ r  

Thus, if ~mn can be described by any analytic function with continuous second derivatives, 
the coefficients are uniquely determined. Equation (A-8), moreover, may be solved by any 
of several numerical methods for ordinary differential equations (Ref. 22). The solution, 

however, will require initial estimates of f~ and its derivatives at one or more points in the 

flow and satisfaction of the boundary condition fi(1) = 0. These estimates may readily be 
obtained from the eml = constant solution of Eq. (80). 

One solution procedure which has been programmed in Fortran IV involves reducing the 
order of Eq. (A-8) by introducing the relations 

with 

1 

gn = g n -  l 

81 = f i  

(n > 1) 

(A-IO) 

Equation (A-8) is thus reduced to a series of  first-order simultaneous equations: 

'[. ] g3" -- --A g 3 + C g 2 +  Dgl + Efi i- F (A-II) 
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g2 = g3 

gl = g2 

f "  ~ g 
= I 

(A-i 1) 

Concl. 

Integration of  each equation was accomplished using a fourth-order Runge-Kutta method in 

conjunction with the secant method for simultaneous nonlinear equations (Ref. 23). The 
real part of  the distribution function is then 

fT = Yg2 + g] (A-12) 

The transient velocity at each point of  the flow field is 

Vl(r/zr) = fr(r/) cos r -  f,(r/) sin r (A-13) 

and the instantaneous velocity profile is 

with Vo(r/) given by Eq. (46). 

V(r/, r) = Vo(Y 1) -- ~"1 (r/,r) (A-14) 
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A P P E N D I X  B 

A NOTE ON C O M P L E X  F O U R I E R  EXPANSIONS 

The Fourier t r igonometric  expansion of  an arbitrary periodic function,  fit), which 
satisfies the Dirichlet condit ions (Ref. 24) may be written 

f ( t )  = ~ 4- An c o s  n o t  t- B n s in  n<ot (B-l) 
n=l n=l 

where the Fourier coefficients are given by the t ransforms 

and 

,, C+P  

A ~ ~ f(t ") cos (no~t ") dr'; r, = 0. l. 2 . . . .  (B-2) 
n w, c 

f 
C+P 

13. -_- 2 [ ( t ' )  sin (hoot ") dt "; n = 1 , 2  . . . .  ( B - 3 )  
" C  

The basic period of  the function is P = 2~-/~, and r/~ represent the various harmonics  of  
ft. 

it is often convenient to express Eq. (B-l) in its equivalent complex form,  

l n ~ t  
f ( t )  = Y~ e 

n 
n o c  

( B - 4 )  

which is readily obtained by a direct substi tut ion of  the complex definit ions of  the sine and 

cosine into the tr igonometric series. When that is done,  the coefficients are defined by 

o r  

y + P  
1 - i .~ t" (B-5) 

~(  = ~ f ( t ' ) e  tit" 

3 n-- ( B - 6 )  
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The functions f(t) considered in this report are always real; thus it is possible to rewrite 

Eq. (B-4) in a form that is more amenable  to computa t ion .  For this purpose,  the complex 

expansion is rewritten as 

in~,~ }(-I rile- i I''I~'' f ;~)  = ~ . £ .~ o , I ' .  (B -7 )  
o . ; l  " I . l = l  

where Hn is still given by Eq. (B-5) or (B-6) but 

f C --P 
1 f(l ')  e ilnlt'Jt (It" (B=8) 

}t-l"l = -P-c 

and 

1{ } 
J~- I . I  = ~ A,, - i  Bn (B-9) 

Compar ing  Eqs. (B-6) and (B-9), one sees that H,  and H _ Inl are complex conjugates.  The 

terms to be summed in Eq. (B-7) are, likewise, complex conjugates.  Thus,  for any real 

function f(t), Eq. (B-7) becomes 

i no,, I 
t'(t) = J-( . ,  2 ~.  J{ c (B-10)  

l) r l = l  ]1 

where it is unders tood that n is a positive integer and the coefficients are defined by Eq. 

(B-6). 
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A 

An 

Ar~ 

a* 

CI' 

Bn 

b 

C 

Cr 

Fa(~,t) 

~'(t) 

f,(O 

f,(~) 

G* 

l,,(i' :2x) 

K,,(i I.'2x) 

M,.(x) 

m 

rh 

NOMENCLA'rURE 

Dimensionless vibration amplitude, Zo/R 

Fourier Cosine Transform, Eq. (71) 

Dimensionless pressure amplitude, fll/flo 

Frequency parameter, (Re0 t;2 

Generalized amplitude, Eq. (40) 

Modified amplitude, Eq. (54) 

Fourier Sine Transform, Eq. (72) 

Mean value of arbitrary parameter 

Constant 

Fanning friction factor, ~,,/0t~ 2 

Arbitrary function, Eq. (28) 

Arbitrary forcing function, Eq. (40) 

Radial distribution function, Eq. (57) 

Imaginary part of distribution function, Eq. (80) 

Real part of distribution function, Eq. (79) 

Dimensionless mass flow rate, Eq. (33) 

Complex Fourier Coefficient, Eq. (62) 

Modified Bes,~el function of first kind 

Modified Besscl function of second kind 

Modulus of polar representation of I~(il'2x) 

Empirical coefficient, Eq. (49) 

Mass flow rate (M/t) 
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n 

P 

P 

p' 

p* 

R 

Re 

Re* 

Ren 

Rev 

Re* 

Ruiuj 

(r,0,z) 

(r '  ,0' ,z') 

S 

S 

T 

t 

(u,v,w) 

Uh 

U* 

(u,v,w) 

(u',v~,w ') 

nth harmonic or term 

Instantaneous pressure (m/Lt 2) or period (t) 

Mean pressure (M/Lt 2) 

Fluctuating pressure (M/Lt 2) 

Reference pressure (M/Lt 2) 

Tube radius (L) 

Mean throughfiow Reynolds number, 2 < 0 >  R/v 

Friction Reynolds number, U*R/v 

Harmonic Reynolds number, wZoR/~, 

Vibrational Reynolds number, ¢oR2/v 

Modified vibrational Reynolds number, Re,./[l + (eml/V)] 

Correlation coefficient, ut'uj'/U *z 

Noninertial cylindrical coordinate system 

Inertial cylindrical coordinate system 

Pulsation strength, Eq. (82) 

Empirical coefficient, Eq. (48) 

Time interval (t) 

Time (t) 

Reference frame velocity (L/t) 

Harmonic velocity, o~Zo (L/t) 

Friction velocity, <x/"<"6~;"Z~ 

Mean velocity components (L/t) 

Fluctuating velocity components (L/t) 
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Vl 

Vc 

Vi 

Vi 

Vo 

Vi 

Vi r 

v/v/ 

Xi 

Xi,X) 

< X >  

X 

Zo 

A 

8 

~m o 

Em i 

1/ 

An 

P 

#o 

Dimensionless transient velocity 

Centerline velocity, W(o,t)/U* 

Instantaneous velocity, w(r,t)/U* 

Reference frame velocity component (L/t) 

Dimensionless mean velocity 

Mean velocity component (L/t) 

Fluctuating velocity component (L/t) 

Reynolds stress component 

Body force (ML/t 2) 

Cartesian coordinates 

T 
Time mean value, I/T J0 xdt 

over a cycle, l/2w J~xdt Mean value 

I 
Spatial mean value, J0 x~ d~ 

Vibration amplitude (L) 

Cubical dilitation, 

Boundary-layer thickness (L) 

Eddy viscosity of mean flow (L2/t) 

Eddy viscosity of transient flow (L2/t) 

Dimensionless axial coordinate, Z/R 

Dimensionless radial coordinate, r /R 

Fourier coefficient relations, Eqs. (74) and (75) 

Absolute viscosity, (M/Lt') 

Bulk viscosity, (M/Lt) 
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P 

0 .(x) 

e 

7" 

f l  

ao 

Kinematic viscosity (L2/t) or order of Bessel function 

Phase of polar representation of I~ (il/2x) 

Density (M/L 3) 

Wall shear stress, (M/Lt 2) 

Dimensionless time, oJt 

Pressure coefficient, P - P*/0U .2 

Mean flow pressure coefficient 

Transient component of pressure coefficient 

Frequency ( l / t )  
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